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Abstract— Modern application development encompasses a wide range of areas,

spanning from high-level user-interface markup to low-level server and systems pro-

gramming. These applications employ various multiparadigm techniques, predomi-

nantly drawing from architectural patterns rooted in Object-Oriented Programming

and to a lesser extent, Functional Programming. Although several architectural pat-

terns emerge, they often fall under just one Software Engineering subdiscipline, includ-

ing State Management (SM), Component-Based Software Engineering (CBSE), and In-

cremental Computation (IC). However, these subdisciplines often remain isolated from

each other, resulting in applications that rely on software libraries and frameworks

that adhere to a singular approach. We introduce ReArch, a reactive and highly func-

tional approach for designing an application architecture that provides a solution to

SM, CBSE, and IC. ReArch includes novel innovations that support the composition of

application code and arbitrary side effects, all while keeping application code function-

ally pure. ReArch has already been used to develop multiple production-grade appli-

cations across a variety of application domains, demonstrating its wide applicability.

Going forward, ReArch will continue to provide applications with loose code coupling,

maintainability, and testability by design.
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1 Introduction
This thesis aims to introduce an entirely new way to architect and build applications: ReArch.

ReArch is a language-agnostic idea with two accompanying library implementations that pro-

vides a solution for a number of problem domains, including state management, incremental

computation, and component-based software engineering. The solution is highly functional and

declarative, while still supporting side effects through a novel realization.

The original motivation for ReArch was to provide a new state management framework for Flut-

ter (Google’s User Interface framework for building cross-platform applications) applications.

Once a working prototype for ReArch was completed, it became clear that ReArch applies to

much more than state management and can be used in a number of different problem domains.

To enable this flexibility, ReArch acts upon two key observations to model applications:

1. The User Interface (UI) is a function of application state/data and any side effect(s). I.e.,

when given application state as an input, one can create a UI portraying that state for that

given instant in time.

2. Application state/data is a function of other state/data and any side effect(s).

Accordingly, ReArch allows developers to simply define functions of application state/data and

side effects for creating both state and UI, and in doing so improves the scalability of these ap-

plications.

Interestingly, through ReArch’s novel approach to side effects, almost all application code remains

functionally pure, despite being able to handle arbitrary side effects. Further, code is loosely coupled

by design and testability is significantly improved, eliminating the need for any sort of compli-

cated mocking. This outcome differs from other solutions, wherein side effects are often hard to

manage due to their lack of testability and predictability as codebases change over time.

The original idea for ReArch (although dozens of design iterations ago) was inspired by a number

of Flutter libraries, including Riverpod, flutter_hooks, and functional_widget. ReArch would not

have been possible if not for these stellar, role-model projects. Throughout its numerous design

iterations, ReArch borrowed many ideas from these packages along the way.

1.1 Motivation
A driving force behind ReArch’s initial development was a feeling of unsatisfaction; Flutter re-

mains intentionally unopinionated, forcing developers to manage state in a way of their choos-

ing. When making a larger application, using Flutter’s core components proves to take a lot of

time and boilerplate, which many state management frameworks were created to solve. How-
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ever, one quickly realizes that state management is more than just view/data management–it

also encompasses data persistance, network requests, and much more to make a full application.

1.1.1 Solution Complexity
With new state management frameworks come new ways to handle these more complex scenar-

ios; however, most frameworks tend to just provide a solution for each individual requirement

(persistence, network requests, etc.) without creating a general solution that can apply to any

sort of complex requirement. When looked at under a certain theoretical lens, this exact issue

happens to be side effect composition (i.e., how can we combine different side effects together

to make new and interesting side effects?).

1.1.2 OOP vs. FP Paradigms
To solve general application development problems, many patterns and paradigms have been

created with Object-Oriented Programming in mind over the past several decades. While these

solutions are abundant and tried and true [1], not as many paradigms exist for programs built

with a function style in mind. Thus, when given a desire to implement an application in a func-

tional manner, one might ponder how to create an application in a data-driven, reactive, declar-

ative way without relying upon inheritance, as is often done in OOP applications.

1.2 Background
As mentioned above, ReArch provides a solution for numerous disciplines in software engineer-

ing, including state management, incremental computation, and component-based software en-

gineering. Further, ReArch is applicable across programming languages and can be used for a

multitude of different application requirements.

1.2.1 State Management
Originally, all GUI application development was done natively; i.e., using the tools and resources

provided by the operating system to build out an application directly. As application development

has evolved over the years, many new approaches to application development have emerged,

along with differing approaches on how to build out actual applications, piece by piece.

A common requirement in GUI applications is to update a user interface when changes are made

to application state. Although this requirement is simple at the surface level, it is quite open-

ended and does not prescribe any specific means of achieving the goal, which leads to many

different solutions. At a fundamental level, applications have an underlying model layer that

contains the application state that is then transformed and rendered to the user. State manage-

ment frameworks provide the ability to manage application state throughout the lifecycle of an
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application, and often provide many other conveniences, such as data persistence and render-

ing optimizations. Examples of such state management frameworks can be found in the Related

Works below.

To aid in developing user-facing applications, several design patterns have emerged over the

years. Model View Controller (MVC) is one the most well known patterns and revolves around

the separation of application data (model), user interfaces (view), and the application logic that

bridges the model and view (controller) [2]. Due to bloat that often ends up in the controller layer

in MVC, later came the Model View ViewModel (MVVM) pattern, derived from MVC, which

employs data-binding to enforce a stark separation of concerns [3]. These patterns, in addition

to many others, are often accompanied by techniques like dependency injection [4] and the Ob-

server pattern [5] to create a fully featured application.

Employed to build graphical cross-platform applications, Flutter is a modern UI framework that

uses the concept of widgets. Widgets are organized into a tree-like structure and are built to cre-

ate a UI that is shown to the user [6]. Widgets are often UI code, but can also serve to handle state,

accessibility/semantic information, and other important requirements in applications. Flutter is

agnostic with regard to state management, allowing developers to choose a solution best suited

toward their applications.

1.2.2 Incremental Computation
Incremental computation is a technique in which computation fragments are cached as the input

data changes in an effort to save processing power. A common example is a spreadsheet, wherein

cell changes only propagate to the affected cells which are then recalculated (versus refreshing

the entire spreadsheet). This technique is used in numerous problem domains, including code

compilation tools such as the Rust analyzer (which uses salsa) to only recompile code when it

changes [7].

Incremental computation is often achieved by forming a data flow graph between data inputs

and computations (which both serve as nodes). Then, all one has to do is compute the transitive

closure starting from the changed node to determine all other nodes which need to be recom-

puted. An algorithm often employed for this task is topological sort, which acts similar to a depth

first search with some key modifications to preserve computation ordering.

1.2.3 Component-Based Software Engineering
Component-based software engineering is a subdiscipline of software engineering that revolves

around the notion of components, which are individual, self-contained building blocks a devel-
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oper can assemble together to create an application. Software engineering researchers have long

promoted the effectiveness of component-based software engineering for improving the code

quality of software systems [8].

Component-based software engineering suggests a world in which components model reusable

individual application features and functionalities, all composed together to create a full applica-

tion. This model works well for purely functional software components (e.g., a spell checker), but

cannot readily handle some components that are not purely functional (i.e., how would one com-

ponent share some mutable data to several other components while maintaining consistency?).

Additionally, components often relied heavily on external dependencies, such as a database man-

agement system, and their internal implementation directly accessed persistent storage (e.g.,

through SQL queries). Most of the existing component implementations simply avoided the real

problems that are evident when the interaction between two components exposes potential side

effects.

2 Related Works
Many works have been published in the last couple decades in regards to state management,

incremental computation, and component-based software engineering.

2.1 State Management
State management has roots in some of the first applications created and has evolved significantly

with the introduction of patterns like MVC and MVVM. Many techniques and methodologies

exist today for application development, with the flow and order of influence of some of these

approaches depicted in Figure 1. ReArch, although largely introducing novel approaches to ap-

plication development, still drew inspiration from a vast array of techniques.
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Figure 1:  The order of influence for various application-building techniques, especially with re-

gards to state management.

2.1.1 Flutter
Flutter has simple builtin support for state management through the provided StatefulWidget and

InheritedWidget. While a StatefulWidget maintains some piece(s) of changing state throughout

its lifecycle, an InheritedWidget provides some value to its descendants in the widget tree. While

the state of a complex application can be built upon just these two building blocks, a developer

quickly realizes that StatefulWidgets and InheritedWidgets both require substantial boilerplate,

in addition to minimal code reusability for common operations.

2.1.2 Provider
To solve the boilerplate of InheritedWidgets, the library Provider was designed to give devel-

opers an avenue to provide application state to graphical widgets via providers [9]. Providers

simply provide some typed data to their children in the Widget tree, but the pattern as-is was

shown to have numerous limitations. Provider is not compile-time safe, instead opting for run-

time checks. Further, one must create a new type (often an entire class) since one cannot have

multiple providers of the same type of data. Side effects, such as asychronous code, can be tricky

to await and properly handle in UI since there isn’t as much support for such side effects pro-

vided in provider.

2.1.3 Riverpod
Thus, after some years, it became clear that Provider had some fundamental underlying limita-

tions, and the same author went on to fix said problems in Riverpod. Riverpod is self-described as

a “Reactive Caching and Data-binding Framework,” and serves as a turnkey state management

framework [10]. However, Riverpod has some fundamental weaknesses due to its complicated

design that originally inspired the creation of ReArch.
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2.1.3.A Many Types
Riverpod has a large number of different types of components that take awhile to fully grasp.

Code generation was introduced in the second major version to help with this problem, but

there are still a mutlitude of different types under the hood that have to account for all one-off

scenarios and users sometimes have to pick between different options which can also confuse

beginners.

2.1.3.B Provider Functionality
Like Provider, Riverpod also exposes providers to house application state; however, Riverpod

handles providers differently. Providers in Riverpod can be of any type and can have inter-de-

pendencies, forming a dataflow graph. While this approach works well on paper, two problems

are quickly uncovered when building an application:

1. How does one acquire application state that relies upon some keyed data?

2. How does one ensure the graph doesn’t constantly grow in size when some subgraphs may

no longer be in use?

To solve the first question, Riverpod introduced Family providers, and for the second, AutoDis-

pose providers. However, the manner in which these two features were introduced often results

in overcomplication and bad practices.

2.1.3.B.I Family Providers
Families have two underlying implementation problems. The first is that family providers inter-

nally act as if a new provider instance is created for each unique set of inputs. This in turn causes

the globally-stored cache to grow substantially, and requires AutoDispose to prevent leaks (but

AutoDipose itself has problems). The second problem is that families are globally scoped, despite

only ever being required in a locally scoped context. To best explain that point, one must con-

sider where family providers can be used. There are two possible answers:

1. When the provider is used locally, the local key and state will be promoted to global state

(where family providers reside). This violates best practices of minimizing the scope of state

and variables.

2. When the provider is used globally, one would need to store the family key in one provider,

and then use the family provider to turn those arguments into a new provider accessible

globally. While family can work for this situation, it doesn’t entirely make sense over nor-

mal provider composition. To prevent leaks, one is forced to make the provider AutoDis-
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pose. Further, the framework must deal with the complexity of caching the different in-use

versions of the family, which then forces the parameters to override hashCode and ==.

Both of the above situations are an ideal scenario for the factory pattern, borrowed from Object-

Oriented Programming. The factory pattern provides a means to create some object or applica-

tion state via some non-injectable data/key, which is exactly what families were introduced to

solve.

2.1.3.B.II AutoDispose Providers
While being able to clear a cache when its no longer needed is generally a good idea, implemen-

tations of said idea can be challenging to do effectively. Riverpod’s implementation of AutoDis-

pose providers has a few limitations. All providers must be explicity declared as AutoDispose

or not, which can easily cause maintenance bugs as applications grow in size and complexity

when one expects a provider to have previous data when in fact it was disposed (or vice versa).

Further, timer-based disposal delays are exposed (disposeDelay) in order to prevent disposal of

certain AutoDispose providers when navigating around a Flutter application. Relying on some-

thing such as timing in order to prevent bugs is often considered a bad practice when a true

fix is more appropriate. Finally, the existing implementation requires slew of types throughout

the framework (or the use of a IDE linter to point out problematic code), in addition to a tight

coupling between the main package and the auxillary Flutter support package to provide the

necessary AutoDispose functionality. Application state is divided between two categories–global

state and ephemeral (disposable local) state. If some state needs disposal, there is a high likely

hood that it is in fact ephemeral state. In odd cases where there is a large global cache (which

often is stateful for an application), it often should be handled on case-by-case scenarios due to

differing data retention requirements between applications.

Similar to family providers, AutoDispose providers are adequately addressed via the factory

pattern. Factories can be used to manage an object’s lifecycle as an application requires. Also,

ReArch introduces automatic garbage collection that identifies capsule subgraphs which can be

safely disposed without any user intervention.

2.1.3.C Expressiveness
Despite often favoring declarative approaches when composing providers, this approach clashes

with some procedural approaches throughout the framework. Notifiers are a construct intro-

duced in provider that aim to manage mutating state via a class that exposes mutating methods.

However, the state is a field of the class and requires explicit assignment to mutate, in addition to
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a build method that rebuilds the data. Beginners often get confused with this distinction, espe-

cially when mutations (moreso with asynchronous code) require procedural approaches. In ad-

dition to the state, Notifiers contain several other fields and intricacies like future that are not

declarative and especially confused to newcomers. Notifiers were design to solve the problem of

mutating state over time through object-oriented programming, but the approach doesn’t mix as

seamlessly with the functional/declarative/reactive approach found elsewhere in the framework.

2.1.3.D Scoping State
Riverpod is specifically designed for global application state, but provides ways to be used for

local state. However, there is no easy way to scope state to a particular Widget, and when you

do, requires advanced features that are error-prone, including having to manually specify a

provider’s dependencies (when they are already implicitly declared in the provider itself). Ad-

vanced features like scoping state are inherently complex and hard to grasp, and an application

will likely need some of them as it furthers along in development.

2.1.3.E Lack of Extensibility
The core framework has a lot of necessary functionality builtin, but doesn’t expose a way to

easily extend that builtin functionality. Several crucial features, like data persistence and watch-

ing mutations, have been open issues for some years. If the framework provided a way for third

parties to easily build this functionality, then this would be a non-issue; however, features like

these require a deep integration with Riverpod as-is and have yet to be implemented.

2.1.4 BLoC
Business Logic Component (BLoC) is a design pattern that has a companion library for Dart/

Flutter. BLoC revolves around the idea that the UI can emit events (e.g., a button press or text

input) which are then picked up by an intermediate layer that emits new states for the UI to

display. The middle layer thus can be expressed as a function consuming the current state and

the fired event, returning the new state. While this pattern effectively removes coupling between

the UI and state, it often results in overly verbose code (developers need to create boilerplate for

every single possible event and state) and causes the accompanying package to include “cubits”

for simpler state interactions. As such, the BLoC pattern is a great solution for complex UIs with

many possible non-intersecting states, but for the vast majority of scenarios it is more verbose

than needed to acheive predictability. Further, the BLoC pattern itself is easy to acheive without

the companion Dart/Flutter library; Hooks and ReArch both provide a reducer side effect that

enable the BLoC pattern.
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2.1.5 ReactiveX
On a different trajectory, ReactiveX is a language agnostic methodology that extends the Ob-

server pattern to enable functional code similar to that of the Iterator pattern [5]. ReactiveX and

the observable pattern are often touted as an easy way to approach application modeling using

side effects and simple transformations on that data. ReactiveX is widely used across the indus-

try, especially in frontend code with RxJS. In Dart/Flutter, Streams are often used to mimic the

same pattern.

Despite wide adoption, ReactiveX suffers from a fundamental limitation when building larger

applications: the Observer pattern cannot correctly support side effects for composite observables

due to the lack of a dependency graph (side effects may be incorrectly triggered or be left in an

invalid state when there are multiple observables that have dependencies on each other). While

the side effects and transformations from ReactiveX are a useful approach to data modeling, it

only works on individual observerables in ReactiveX and disallows proper composition. The lack

of a mechanism to correctly support side effects thwarts any form of useful composition/assem-

bly across observables, at least at scale.

Figure 2:  Sample set of composed observables.

For example, take Figure 2. If the common observable dependency were to update, it’d propagate

changes directly to Observable A and Observable B. Before yielding control flow to B, A would

first propagate its own changes to the composite observable, which houses some side effect (for

the sake of this example, logging). It would then log the new value of A, but the old value of B.

However, right after the first log, B would be notified via the common dependency observable,

causing another log from the composite observable with the actually correct value. As can be
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seen here, updates without a proper notification order (caused by no dependency graph) result

in incorrect triggering/state of side effects which is unacceptable for the matter of correctness.1

1Astute readers familiar with ReactiveX may point out that zip can be used to solve the provided problem in
Figure 2. However, try adding in another dependency for the composite observable that that does not depend
upon the common observable– it is quickly evident that it is not feasible to correctly compose observables in this
manner.

2.1.6 React Hooks
React Hooks was one source of inspiration for the original design of ReArch and still has much

influence on the exposed API of the Dart implementation today. Hooks opens the door for com-

posing side effects, which is an expressive technique enabling declarative side effect code. While

they work well for their intended use, hooks suffer from several limitations. Hooks only work for

managing local state and cannot be used outside of UI code. Further, hooks often require explic-

itly declaring the environment variables a closure closes-over in order to run side effects only on

certain builds. Finally, while mocking is possible during unit testing, UI code still remains tightly

coupled to the React library since hooks are builtin library functions that have side effects.

2.1.7 Dependency Injection
Dependency Injection (DI) is a common practice through frameworks like Guice and Dagger,

and are widely used across the industry. DI is often used to maintain application-wide state via

an injected singleton state object, which then enables state sharing. However, existing solutions

rely upon runtime introspection (Guice) or code generation (Dagger) which impact runtime and

compiletime speeds, respectively. Further, while injecting singleton objects works adequately for

simple mutations and side effects, complex state objects suffer from the lack of easy observability

when using dependency injection. If the observer pattern is used to mitigate these issues, the

same exact issues discussed with ReactiveX above are now prevelant. ReArch also serves as a

means to achieve proper dependency inversion, but does so in a functional and reactive manner.

2.2 Incremental Computation
Numerous works have been published to optimize prior solutions in incremental computation.

When spreadsheet programs were first introduced decades ago, computer scientists quickly real-

ized they would not be able to update an entire spreadsheet each time data changes (especially on

the resource-constrained devices of the time). Around the same time, several initial approaches

to incremental computation were born to accomodate similar situations. In addition to spread-

sheet applications, incremental computation also has a strong foothold in other spaces, such as

to aid in code compilation [7].
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2.2.1 Adapton
Many incremental computation implementations were inspired by Adapton. Adapton is a de-

mand-driven approach to incremental computation, providing significant performance improve-

ments over previous incremental computation implementations by skipping computations that

have no demand [11]. While Adapton is especially well-suited toward particular workloads, it

suffers from a complicated model that cannot support arbitrary side effects; the lack of side ef-

fects is a common limitation in incremental computation approaches that prevent adoption in

many more applications. While many incremental computation frameworks support mutating

inputs [11], a manually mutated input cannot exhaustively handle all forms of side effects. While

such a framework handles computations effectively, one cannot make a full application using

only computations (without side effects) outside of a few select disciplines.

2.3 Component-Based Software Engineering
Much academic work has been published in the past couple decades in regards to component-

based software engineering. As time passed, novel component models were introduced that

aimed to solve unique challenges faced by other component models.

2.3.1 Exogenous Connectors
In an attempt to separate the design and deployment phases of component-based software engi-

neering and to properly define how components operate [12], Kung-Kiu Lau created a compo-

nent model called Exogenous Connectors that features atomic components (representing purely

functional computations) and composite components (which orchestrate the activities of atomic

and other composite components) [13]. However, components have a number of competing re-

quirements, such as mutating state, storing data persistently, in addition to sharing data with

other components; consequently, component composition is difficult in practice for a full appli-

cation that has to handle impurities. The underlying problem of this observation is in part due

to the handling of side effects–if a component model was to natively support side effects, then

arbitrarily complex components could easily be composed together as expected due a the uni-

form API.

3 Design
The original inspiration for ReArch came after uncovering pain points in many exisiting solu-

tions. While exisiting solutions all brought different features to the table, there wasn’t one solu-

tion that was easily able to accomodate all of a large application’s requirements. Thus, ReArch

was created to reach feature parity with the many existing solutions by focusing on extensibility
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while also incorporating novel innovations. To complement extensibility, the biggest overarch-

ing design goal is composability. It is often easiest to model applications simply by their data and

its flow, which composability enables with loosely-coupled components.

3.1 Goals
1. Small API Footprint with Extensibility

In an age with many established competing libraries and frameworks, simplicity is often over-

looked. Maintaining a small core-API footprint is critical for ease of adoption. Once one learns

the core components of a framework and how they interoperate, it is easy to look at more in-

depth documentation and/or examples to build upon them. ReArch was not only designed to

ease adoption through a small API, but also to facilitate future external contributions in order to

drive a user-friendly ecosystem.

2. Handling Side Effects with Composition

Side effects, such as asynchronous operations and interfacing with external systems, can be chal-

lenging to correctly manage in software systems. ReArch introduces a new side effect model to

the table that enables composition by handling side effects in a modular and predictable manner.

With side effect composition, developers can leverage declarative code to reduce previously er-

ror-prone and unmaintainable aspects of their applications.

3. Reactivity through Declarative Code

By describing the desired state of a system rather than prescribing the steps to get there, declar-

ative code is able to simplify development through increased code readability. Further, reactivity

is paramount to many modern applications due to their reliance on external real-time data, user

interactions, and other such side effects. ReArch aims to achieve reactivity through declarative

code; through interpreting what is defined declaratively, a framework can undergo internal op-

timizations, all while powering reactivity through its job as the orchestrator. The same level of

power is not easily replicable with standard imperative programming, at least without a high

level of effort (abstractions make assumptions and optimizations easier, just as can be seen with

programming languages compilers).

4. Applicability Across Application and Solution Domains

ReArch is designed with the intenion to be used across a wide range of application and solution

domains by providing a consistent, highly adaptable core framework. With a solid and flexible
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base, ReArch excels as a methodology in writting many different types of applications, ranging

from mobile phone to realtime and data-intensive serverside applications.

3.2 Capsules
In ReArch, capsules are the fundamental unit of computation that encapsulate some data (thus

their naming). Capsules are pure functions that return an output, which is an immutable copy

of the capsule’s data. The most primitive capsule, for example, is one that returns a constant

value (see count in Listing 1). As every capsule is simply a function, capsules are uniquely iden-

tified by their function’s signature. Capsules all must consume a CapsuleHandle and return their

typed output, thus following the form of Fn(CapsuleHandle) -> Output. Note that capsules are

commonly higher-order functions, returning functions as their output data, enabling some new

patterns and paradigms.

int count(CapsuleHandle use) => 0;

int countPlusOne(CapsuleHandle use) => use(count) + 1;
Listing 1:  A basic Dart example of how capsules enable declarative code; the count capsule sim-

ply provides a numerical count, and the countPlusOne capsule will always represent the current

count, plus one.

3.2.1 Dependencies
A capsule can compose together the output of other capsules when computing its own output.

As such, each capsule can have zero or more dependent capsules. When a capsule 𝐶1 has a de-

pendent capsule, 𝐶2, then a change to the output of 𝐶1 may cause a change to the output of 𝐶2.

This relationship is represented using notation 𝐶1 ⟶𝐶2 and we would say that the dependent

capsules for 𝐶1 is the set {𝐶2}. Inversely, one can also infer the dependencies for a capsule, C,

because this would be the set of capsules, {𝐶𝑖}, such that 𝐶𝑖 ⟶𝐶 . This relationship of capsule

dependencies and dependents is demonstrated in Figure 3.
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Figure 3:  A capsule, 𝐶 , with a set of labeled dependencies and dependents. The set of dependent

capsules are often referred to as downstream capsules.

As shown in Figure 3, the highlighted region of the dependent capsules is labeled as the down-

stream capsules. The set of downstream capsules represeents the set of capsules that may need

updating when a capsule 𝐶 changes, and is calculated by the transitive closure of the dependency

⟶ starting from 𝐶 .

Dependency relationships are automatically inferred and kept up-to-date by the accompanying

ReArch implementations; however, for illustrative purposes, take Listing 1. count has no depen-

dencies, but one dependent (countPlusOne). On the opposite hand, countPlusOne has no de-

pendents, but one dependency (count). Thus, their relationship can be described as count ⟶
countPlusOne.

3.2.2 Side Effects
While capsules are always written as pure functions, the novel contribution of this thesis is to

enable a capsule to have side effects (despite capsules’ functional purity), which are modeled as

pairing private mutable data 𝐷 with a mechanism to mutate 𝐷. Note that 𝐷 is only visible to

the side effect itself. Any change to 𝐷 (based on the provided mechanism) forces the capsule to

rebuild (more on capsule life cycles later), and potentially emit a different output.

A capsule may or may not have side effects; capsules with no side effects are known as idempo-

tent and enable a multitude of garbage collection strategies. Interestingly, the garbage collection

of idempotent capsules is also what enables ReArch to be perfectly demand-driven, as defined in
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Adapton. Capsule dependencies can easily change with time, allowing demand to be modified

over the course of an application’s run.

3.2.3 Definition
More formally, the state of a capsule, 𝐶 , is defined by the tuple (dependencies, side effects), where

dependencies is the set of capsules upon which the computation of 𝐶 depends upon and side

effects enumerates the side effects (if any) for 𝐶 . This clean separation of dependencies and side

effects ensures that capsules can be composed together even while supporting arbitrary state

changes from side effects.

3.2.4 Life Cycle
When looked at as a state machine, capsules only have two distinct states, and several life cycle

events that can transition between these two states. The first, initial state, is the capsule being

not created/cached; the second state is when the capsule is created/cached.

To create/cache a capsule, a capsule must be built, which involves invoking the capsule (as a

reminder, capsules are just pure functions) to get its output. The concept of building capsules

is borrowed from other frameworks, like widgets in Flutter [6] and providers in Riverpod [10].

Building capsules enables declarative definitions, and let the underlying framework handle all

of the imperative glue behind the scenes. The approach is similar to constructors in dependency

injection as used in OOP, but is instead adapted to apply to a functional approach.

When a capsule is already cached, it can be rebuilt (either from a dependent rebuilding or from

a side effect mutating). This causes the capsule to (possibly) emit a new output. If this output

changes, a capsule’s dependents must also rebuild; if not, dependent rebuilds may be skipped as

an optimization.

Finally, capsules will be disposed. For the case of idempotent capsules, this often happens when

a dependent is rebuilt and the idempotent capsules have no demand (i.e., is in an idempotent tree

subgraph). Non-idempotent capsules will only ever be disposed when the container (discussed

later) is disposed, as they are stateful and tied to the container’s internal store directly.

This overarching flow can be seen in Figure 4.
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Figure 4:  A capsule’s life cycle of two states: either cached or not cached. Capsules can be built

for a first time, experience rebuild(s), and eventually get disposed.

3.2.5 Composition
New capsules can be easily created via composition by referencing the output of some dependency

capsules. Composition enables capsules to remain loosely coupled, despite depending upon other

capsules’ data. As an example, take three capsules where 𝐴⟶ 𝐶 and 𝐵⟶ 𝐶 . In this instance,

𝐶 is composed with the current data of 𝐴 and 𝐵. Further, the underlying data of 𝐴 and 𝐵 may

be easily swapped out in testing, as the CapsuleHandle merely serves as an interface (Dart) or a

mockable structure (Rust).

3.2.5.A In Applications
Applications are assembled via the composition of independent capsules as shown in Figure 5.

Thus, there will be possibly numerous backing capsules in a single application, where each indi-

vidual, boiled down feature requirement tends to map one-to-one with a corresponding capsule.

Through architecting an application via the lens of capsules, entire applications can be built with

very loose coupling and rapid feature adoption (by simpling creating a new capsule for each new

feature).
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Figure 5:  A sample application’s capsule dependency graph.

3.2.6 Data Flow Graph
The composition of capsules internally forms a data flow graph. If given a collection of cap-

sules developed with composition, {𝐶1, 𝐶2,…,𝐶𝑛}, one can define the directed acyclic graph

𝐺 = (𝑉 ,𝐸) where 𝑉  is a set of vertices and 𝐸 is the set of edges. Each capsule 𝐶𝑖 maps to vertex

𝑉𝑖, so there are 𝑛 vertices in 𝑉 . If 𝐶𝑖 has a dependent capsule 𝐶𝑗 then the edge 𝐶𝑖 ⟶𝐶𝑗 exists

in 𝐸. This resulting graph is called the data flow graph, as it represents the fashion in which

updates to capsule data flow.

3.2.7 Dynamic Capsules
As traditional capsules are static in the sense that they are known at compile time, ReArch also

supports the concept of dynamic capsules that can be determined at runtime. A common use

case of dynamic capsules is for data that is keyed by some input, such as traditional incremental

computation and dynamic programming problems. For an example, take Listing 2, which details

how to evaluate the fibonacci sequence using capsules and ReArch’s builtin caching mechanism.
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struct FibonacciCapsule(u8);

impl Capsule for FibonacciCapsule {

    type Data = u128;

    fn build(&self, CapsuleHandle { mut get, .. }: CapsuleHandle) -> Self::Data {

        let Self(n) = self;

        match n {

            0 => 0,

            1 => 1,

            n => get(Self(n - 1)) + get(Self(n - 2)),

        }

    }

    fn eq(old: &Self::Data, new: &Self::Data) -> bool {

        old == new

    }

    fn key(&self) -> CapsuleKey {

        let Self(id) = self;

        id.to_le_bytes().as_ref().to_owned().into()

    }

}
Listing 2:  An example of how to use dynamic capsules to evaluate the fibonacci sequence with

the Rust ReArch implementation.

3.2.8 The CapsuleHandle
The CapsuleHandle is a composition of two types: one enables composition via the reading of

other capsules’ data (the CapsuleReader) and another gives capsules an API to interact with their

registered side effect(s) (the SideEffectRegistrar).

3.2.9 The CapsuleReader
The CapsuleReader itself is a closure; when invoked it retrieves the data of the supplied argu-

ment capsule while internally updating the capsule’s dependency relationships. In code, the Cap-

suleReader is use(someCapsule) in Dart and get(some_capsule) in Rust. Capsule cycles can be

caught via the CapsuleReader, but both accompanying implementations will stack overflow (at

the time of writing); a proper error message is a nice addition that may be added in the future.

While more than one capsule can cause dependency cycles, a capsule is allowed to perform self

reads as an alternative to side effects. When creating the Rust implementation, a first class API
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to access a capsule’s previous value was attempted, only to find it was difficult to do correctly

(at least not without a clunky API). Interestingly, this can perhaps be attributed to Rust catch-

ing a possible logic bug; in order for a capsule to read its previous value, it must inherently

be non-idempotent, as relying upon past state in turn makes something non-idempotent. Thus,

the chosen solution is to force capsules that may self read to register a side effect that checks

whether or not they have already built before trying to read their own data, ensuring they are

non-idempotent (as checking whether a capsule is in its first build is done via a side effect).

3.2.10 The SideEffectRegistrar
Capsules are intended to be functionally pure; i.e., a capsule itself may not use any code that has

side effects directly. When a language allows for it, this can be partially enforced at the language

level (e.g., Rust has an Fn and FnMut, where Fn will prevent the mutation of variables captured

by the function). However, this is circumventable via interior mutability and synchronization

primitives like mutexes, which is actually how some of ReArch’s unit tests are implemented (to

ensure capsules are built as expected). In application code, however, such techniques are consid-

ered a bad practice as they break the reactive nature of ReArch.

Further, erroneous bugs may occur in developer’s code if side effects are used without the pro-

vided mechanism (the SideEffectRegistrar). The SideEffectRegistrar allows capsules to use

side effects by giving capsules a look into the outside world (more on side effects in the following

sections), by using a container as the middleman.

3.3 Containers
Because capsules are pure functions by design, they cannot contain any additional metadata or

state that is required for an application. One needs an external mechanism to orchestrate capsule

lifecycles and build capsules in their topological order; this mechanism is named the Container,

as containers contain the state of a set of capsules. Containers are first created, can then be used

to interact with a given set of capsules, and are finally destroyed (often at application exit), eras-

ing the state of all contained capsules.

When created, a container has no capsules. Capsules can be added to the container one at a time,

or as a set of capsules. An application is divided into numerous capsules, each of which performs

some computation towards the greater application.

Containers are an effective approach with an analogous solution in several other modern state

management solutions [10], [14] due to their ability to effectively remove code coupling in a
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manner similar to dependency injection. Thus, with containers comes increased testability, easy

implementation switching at runtime, and everything else expected from loosely coupled code.

Containers provide the core functionality to retrieve the output from a capsule. Other function-

ality, like reacting to capsule changes, can be accomplished through capsule composition and the

creation of new capsules; however, some ReArch implementations may choose to expose such

common methods on the container directly for ease of use or for container space optimizations.

Further, each implementation may expose other container methods depending on the applica-

tions meant to be built with the given implementation, including the ability to manually create

container transactions in Rust (more on transactions later).

While reading capsules is the only required element of the public-facing API, containers undergo

numerous interal processes as well, including building capsules, rebuilding capsules, caching/

preserving state, and a configurable automatic garbage collection.

3.3.1 Reading Capsules
Containers act lazily and only perform what is requested of them at the time of request. When

an actor reads the output value from a capsule C, the container will lazily ensure that all depen-

dencies for C are instantiated, instantiate the capsule, C, itself if needed, and then return the

current output for C. An example of this can be seen in Figure 6, where an actor reads capsules

A, B, and C, where B is a dependency of C. When C is read, the container first builds and caches

B, followed by building, caching, and returning C.
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Figure 6:  Timeline of container initializing three capsules: A, B, and C, where C has a depen-

dency on B.

In order to enable this lazy execution of requests, containers undergo a particular process while

reading capsules. A container first checks to see if it has already cached the output of the cap-

sule. If it does, it simply returns that cached value; if it does not, the container must build the

requested capsule and cache its output (doing the same for any dependencies along the way).

3.3.2 Building Capsules
To build capsules, the container creates a temporary lease of itself, which is exposed in the

ReArch API as the previously discussed CapsuleHandle. This lease contains the current state of

the container, giving capsules a copy of the current and consistent state of all their dependencies
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(more on consistency later), in addition to the state of its registered side effect(s), if there are any.

Further, as a capsule builds, the container forms/updates its internal dependency graph with the

new dependency-relationship edges of the capsule in question, marking the capsule as a depen-

dent of its dependencies (and the two accompanying implementations do the opposite as well to

ease the implementation complexity, although this is not necessarily required). A container must

refresh dependency relationships on every build because capsules able to dynamically change

their dependencies by conditionally requesting their dependencies in rebuilds (i.e., in an if/else

branches).

3.3.3 Rebuilding Capsules
When a capsule C rebuilds, either due to a side effect triggering a rebuild or due to a dependency

rebuilding, the container is responsible for rebuilding all downstream capsules. As described ear-

lier, the set of downstream capsules is computed from the transitive closure of C’s dependents.

These downstream capsules must be rebuilt in their topological ordering to ensure correctness,

which is acheived by a topological sort over the graph using a modified depth-first search algo-

rithm, starting from the rebuilding capsule. Once a container computes a suitable topological

ordering, the container then starts building the capsules in order and can skip building certain

capsules when all of the capsule’s transitive dependencies don’t change (i.e., emit the same data).

Figure 7:  A completed topological ordering of a sample capsule dependency graph. Highlighted

capsules are numbered in their build order.

3.3.4 Caching/Preserving State
A key requirement of containers is to cache and preserve the state of capsules when necessary.

Reading capsules is a fairly common operation, and thus needs to be 𝑂(1) to keep applications

performant. Thus, a data structure with constant-time lookups is required.

To meet this requirement, a hashmap is the data structure of choice. The key observation here is

that capsule functions act as keys in this hashmap, while the capsules’ states serve as the values.
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While a capsule’s state must clearly include the capsule’s current output, capsule state also in-

cludes several other pieces of information necessary for container operation. Capsule state also

includes a capsule’s private side effect data (if any), in addition to any dependent capsules in the

event of a rebuild.

Interestingly, in the configuration outlined above, a container’s hashmap acts similarly to a vir-

tualized version of the heap that today’s programming languages offer. A capsule’s definition

(the function) acts as a pointer of sorts, and the container acts as the heap that contains the data/

memory for any given capsule/pointer. The analogy is further extended by the fact that all data is

stored contingently in the heap despite the lexical scoping of any variables in a program, which

is the same way capsules work (capsules’ states are stored at the same level in the container, but

capsules can only depend upon capsules available at their lexical scope). Modeling containers in

this manner is necessary for a few different reasons, the biggest of which is to ensure that there

will only ever exist one instance of a capsule even when multiple others depend on it (traditional

hashmaps allow for only one value per key by design).

3.3.5 Concurrency
With the backing data structure of a hashmap, one must also question how containers handle

multithreaded and concurrent workloads. In languages featuring an event loop, such as Dart and

JavaScript, concurrency is a non-issue as any object can only be accessed by one actor at a time

by design. However, in languages like Rust wherein concurrency is vital to application design, a

proper concurrency model must be chosen.

3.3.5.A Mutex
A easy and naive solution is to simply wrap a container’s inner hashmap in a mutex for instant,

safe concurrency. However, with a mutex also comes decreased read throughput. Only one reader

or writer may access a container’s contents at a time, which falters read-heavy workloads (which

are common) despite the minimal overhead incurrent by mutexes when compared to other con-

currency approaches.

3.3.5.B Read-Write Lock
A slight improvement over the mutex, read-write locks allow for multiple concurrent readers

and mutually exclusive writers. Read-write locks perform well in read-heavy workloads, but still

suffer from one fatal limitation–a writer will block all readers, and vice versa. As such, slow

writers (due to updating a possibly expansive dependency graph) block all readers, which is not

acceptable in performant real-time applications.
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3.3.5.C Transactional Map
To solve the problem of mutual exclusion between readers and writers, one can look to database

management systems (DBMS). Such systems operate on data, just like containers, and often fea-

ture highly-readable transactions that operate alongside writer(s) through concurrently readable

data structures. Thus, one can borrow the transaction model from DBMS to enable highly-read-

able workloads, while still allowing writers through multiversion concurrency control (MVCC).

This solution is precisely what the Rust ReArch implementation employs; concread is the library

of choice for the concurrently readable hashmap [15].

Readers are cheap and are given a consistent capsule state to read from, while writers are blocked

by a mutex and incur some slight extra cost by copying data on writes to remain concurrent to

any reader(s).

3.3.5.D Bucket-Based Locking
As mentioned in the last section, when using concurrently readable data structures, writers are

mutually exclusive (and in the case of conread, via a mutex). This is acceptable when the capsule

dependency graph may change in unforseeable ways during rebuilds (which is the case for the

two accompanying ReArch implementations as capsule dependencies are allowed to arbitrarily

change between builds). However, in an optimal world, one would know exactly which capsules

might need to be updated during a rebuild, instead of having to assume any capsule may be

updated. With this optimization, a container would only need to lock just those capsules, while

allowing for other writers to update adjacent parts of the container. One such solution would be

a hashmap with bucket-based locking, allowing multiple writers to operate concurrently on dif-

ferent buckets. However, this is not possible without compiler or some other build-time support

due to the dependency on compile-time introspection to enable a reflective look at the capsule

dependency graph before runtime.

3.3.6 Idempotent Garbage Collection
As a large application runs and references a multitude of single-purpose capsules, one may even-

tually want to clear the unused memory in the application’s container. In addition to this growing

memory footprint, bloated containers also result in increased computation; whenever a common

dependency capsule rebuilds, all dependents must be rebuilt as well, even when not in use.

To mitigate these negative effects, containers (by default) perform idempotent garbage collection

on a rebuilding capsule’s dependents. Idempotent garbage collection is employed to reduce a

container’s memory footprint and skip (possibly many) capsule builds, all at no extra cost.
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Idempotent garbage collection is built upon the idea that non-idempotent capsules are stateful

and must be kept in a container’s cache, preventing their disposal. Further, a non-idempotent

capsule must receive all dependency updates in order to maintain side effect correctness (e.g., a

side effect may write logs to disk; skipping log entries is unacceptable). While non-idempotent

capsules cannot be disposed during a container’s lifetime, the same cannot be said about idempo-

tent capsules. The key observation is that idempotent capsules are entirely pure and without side

effects; in other words, idempotent capsules can be procured on-demand at any time given the

state of their dependencies. Thus, when a capsule rebuilds, a container is then able to identify and

dispose entire idempotent subgraphs, as they can just be recreated later if/when requested. This

subgraph disposal is one (common) example of idempotent garbage collection; skipping capsule

builds during a rebuild, in addition to all of those capsules’ future builds as well (since the sub-

graph will have been removed from the graph), saves many cycles of computation. This exact

insight is what allows ReArch to effectively operate as an incremental computation framework;

ReArch is demand-driven, as outlined in Adapton [11].

3.3.6.A Identifying Idempotent Subgraphs
Not all idempotent subgraphs qualify for garbage collection; the dependency relationships of all

transitive dependencies of a non-idempotent capsule must be kept in the container at all times in

order to preserve side effect correctness. Thus, we need an algorithm that will identify all “leaf”

idempotent subgraphs that do not have dependent non-idempotent capsules. Such a task seems

complicated at first glance, until one realizes that this can be solved in 𝑂(𝑛) time using a reversed

topological ordering. As can be seen in Figure 8, one can start at the last (10th) capsule in the

topological ordering and work backwards to determine which capsules only have idempotent

dependents (and consequently are disposable). A Dart code example of this process is also pro-

vided in Listing 3.
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Figure 8:  A set of capsules numbered in their topological ordering. Features non-idempotent

capsules (green), non-disposable idempotent capsules (yellow), and disposable idempotent cap-

sules (red).

Set<DataflowGraphNode> getDisposableNodesFromTopologicalOrder(

  List<DataflowGraphNode> topologicalOrder,

) {

  final disposable = <DataflowGraphNode>{};

  topologicalOrder

    .reversed

    .where((node) {

      final dependentsAllDisposable =

          node._dependents.every(disposable.contains);

      return node.isIdempotent && dependentsAllDisposable;

    })

    .forEach(disposable.add);

  return disposable;

}
Listing 3:  A function that consumes a topological order and returns a set of its disposable idem-

potent capsules. Note that iterables in Dart are lazy, so forEach is called for every element before

the next element is pulled and processed.

3.3.6.B Performing Idempotent Garbage Collection
Once one obtains the set of disposable nodes for a given topological ordering, the building and

disposal of the appropriate capsules must be executed in order. A naive solution would be to

simply build all non-disposable capsules in order and then dispose all disposable capsules. How-
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ever, if a capsule that builds does not change (i.e., it returns the same data), there is no need to

rebuild/dispose its dependent subgraph. To recognize this optimization, the Dart ReArch imple-

mentation rebuilds capsules in a manner similar to that shown in Listing 4.

void buildSelfAndDependents() {

  // We must build self, so we preemptively build it before other checks

  final selfChanged = buildSelf();

  if (!selfChanged) return;

  // Build or garbage collect (dispose) all remaining nodes

  // (We use skip(1) to avoid building this node twice)

  final topologicalOrder = createTopologicalOrder().skip(1).toList();

  final disposableNodes =

getDisposableNodesFromTopologicalOrder(topologicalOrder);

  final changedNodes = {this}; // we built self above

  for (final node in topologicalOrder) {

    final haveDepsChanged = node._dependencies.any(changedNodes.contains);

    if (!haveDepsChanged) continue;

    if (disposableNodes.contains(node)) {

      node.dispose();

      changedNodes.add(node);

    } else {

      final didNodeChange = node.buildSelf();

      if (didNodeChange) {

        changedNodes.add(node);

      }

    }

  }

}
Listing 4:  How a capsule rebuilds in Dart, featuring builds in topological order, idempotent

garbage collection, and skipping builds when capsule data doesn’t change.

3.3.6.C Configuring Idempotent Garbage Collection
So far, this thesis has only discussed the idempotent garbage collection that occurs during cap-

sule rebuilds. It is possible, however, to execute idempotent garbage collection at any time. An

example of this would be eager idempotent garbage collection, which disposes idempotent cap-

sules directly after being read from a container (or never even persists them to the container’s
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cache in the first place) to reduce the container’s memory footprint to the theoretical minimum.

The downside of eager idempotent garbage collection, though, is that multiple reads of an idem-

potent capsule would cause it to be built multiple times and not cached, consuming redundant

CPU cycles. Seeing as it is unlikely to ever be needed in practice (except perhaps on very mem-

ory-constrained embedded devices), eager idempotent garbage collection is currently unimple-

mented in both the Dart and Rust ReArch implementations.

3.4 Side Effects
Side effects, as mentioned in the capsule design section above, are a tuple of some private data

and a way to mutate that data. In this model, mutations of the private data trigger a rebuild of

the side effect’s capsule (which in practice is done by the container providing a weak reference

of itself to side effects so they may trigger the rebuild). Side effect state is stored alongside cap-

sule data in the container, allowing the container to supply capsules with the state of their side

effects whenever they are built. In other words, side effects and containers have a very close-nit

relationship, as containers orchestrate the actions of side effects.

3.4.1 Example
For the most simple side effect example, take Listing 5. The container will provide countManager

with its side effect’s current state (count) and a way to change that count/trigger a rebuild

(setCount). Then, countManager will take the output of its side effect and morph it slightly to

form its own output data (({int count, void Function() incrementCount})). This is a fairly

common pattern in ReArch; the output of a capsule can be directly provided by a side effect while

providing the side effect with new semantic meaning.

/// A capsule that manages a counter.

({int count, void Function() incrementCount}) countManager(CapsuleHandle use) {

  final (count, setCount) = use.state(0);

  return (

    count: count,

    incrementCount: () => setCount(count + 1),

  );

}
Listing 5:  A capsule utilizing the state side effect in the Dart ReArch implementation. For read-

ers familiar with React, this is similar to [counter, setCounter] = React.useState(0);.
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3.4.2 Self-Read Equivalence
Many side effects can also be achieved exclusively through capsule self-reads when the capsule

itself is provided a rebuild mechanism, as both approaches provide the same underlying func-

tionality. To illustrate this phenomenon, take Listing 6, which showcases two ways to count the

number of changes a particular x_capsule undergoes.

fn x_capsule(_: CapsuleHandle) -> u32 {

    0

}

fn x_changes_side_effect_capsule(

    CapsuleHandle { mut get, register }: CapsuleHandle

) -> u32 {

    get(x_capsule); // mark as dep so we get updates

    let changes = register(side_effects::value(0));

    *changes += 1;

    return *changes;

}

fn x_changes_self_read_capsule(

    CapsuleHandle { mut get, register }: CapsuleHandle

) -> u32 {

    get(x_capsule); // mark as dep so we get updates

    let is_first_build = register(side_effects::is_first_build());

    if is_first_build {

        1

    } else {

        get(x_changes_self_read_capsule) + 1

    }

}
Listing 6:  A demonstration of two different capsules that can be used to track the number of

changes an x_capsule undergoes with the Rust ReArch implementation. The first change counter

uses the value side effect (gives the capsule the same value across builds), whereas the second

change counter uses self reads.
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However, the current side effects model is more intuitive and easier to work with than self-reads

directly in most cases, so side effects are provided in the accompanying ReArch implementations

as the go-to solution for varying state over time.

3.4.3 Composition
Even though composing capsules forms a dependency graph, composing side effects always

forms a tree. This important distinction allows side effects to have their own internal side effects

that can be wrapped around and composed. An easier-to-understand example of this is shown

in Figure 9.

Figure 9:  The memo side effect, which creates/caches some object between capsule builds, is

composed from two other side effects: value and previous. Value holds the cached object itself,

whereas previous is used to track dependencies.

While the memo side effect executes some logic of its own to handle object caching, it relies

upon two other side effects to actually persist some state. The value side effect memo registers is

used to track the cached objec itself, and the registered previous side effect is used to keep track

of the cached object’s dependencies. Previous in turn requires its own value side effect, to keep

track of its value from the last build. Such an example demonstrates side effect composition, and

this concept can be taken further to make otherwise complicated side effects with ease. In code,

the memo and previous side effects can be found in Listing 7.

35



T? previous<T>(T current) {

  final (getter, setter) = use.rawValueWrapper<T?>(() => null);

  final prev = getter();

  setter(current);

  return prev;

}

T memo<T>(T Function() memo, [List<Object?> dependencies = const []]) {

  final oldDependencies = use.previous(dependencies);

  final (getData, setData) = use.rawValueWrapper<T>();

  if (_didDepsListChange(dependencies, oldDependencies)) {

    setData(memo());

  }

  return getData();

}
Listing  7:  The source code for the memo and previous side effects in the Dart ReArch

implementation. Both are formed via side effect composition, internally depending upon the

rawValueWrapper side effect.

3.4.4 Alternatives
ReArch went through dozens of design overhauls and revisions before it arrived at where it is

today. A couple of previous iterations of side effects were modeled as “managers” and “local

capsules.”

3.4.4.A Managers
Managers were originally introduced to fill the void of side effects. At one point in development,

I had the idea to introduce side effects as they are today, but I dismissed the idea as “redundant,”

because returning some data from a capsule that is directly from a side effect seemed like an odd

pattern. The alternative, however, was managers, which force the use of OOP and have a clunky/

complicated interface, implementation challenges aside. Managers work by having a separate

“manager” created for each capsule, where users can supply their own custom managers to work

with a particular capsule. Managers can register plugins, which are composable and give the

user some functionality, but with time this approach proved to be too complex and a simpler

alternative was needed.

3.4.4.B Local Capsules
Before side effects were designed to be entirely separate from the lifecycle of a capsule (to enable

loose coupling between the two higher level components), side effects were actually treated as
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local capsules where a global capsule (a regular capsule in ReArch today) can have any number

of global and local capsule dependencies, and a local capsule could have any number of local

capsule dependencies. Local capsules would be instantiated individually on each use, which also

results in a tree as seen in today’s side effects.

4 Implementations
ReArch was implemented as a library for Dart (with an auxilary Flutter companion package)

and Rust. With each library implementation, numerous paradigms were discovered through the

building of a variety of applications.

4.1 Paradigms
Throughout the development of numerous applications, both examples and applications used in

a production setting, several paradigms centered around ReArch’s functional and composable

nature quickly emerged.

4.1.1 UI Application State
In UI applications, especially those modeled as a tree of views, there are two overarching types

of state: global and ephemeral [16]. As apps grow in complexity, there also tends to be a third:

scoped state, which can have some overlap between the two other types. Scoped state is some

state that is available only to the descendants (transitive closure over children) of a particular

node in the view tree.

Many state management frameworks tend to overlook how to properly handle all three types,

and instead focus on one or two, leaving the other(s) with half-baked solutions or ignored en-

tirely. This is one reason that helps set ReArch’s Dart/Flutter implementation apart; ReArch ac-

knowledges that there are different types of state and that they are all applicable for different

scenarios. Further, ReArch provides the same API to work with all three types, so a developer can

easily transition between types when needed. An example of the three different types of state

can be found in Listing 8.
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// Global state (which are just capsules!)

(int, void Function()) countManager(CapsuleHandle use) {

  final (count, setCount) = use.state(0);

  return (count, () => setCount(count + 1));

}

// Ephemeral state (generates a Flutter Widget that

// has local state)

@rearchWidget

Widget localCount(WidgetHandle use) {

  final (count, setCount) = use.state(0);

  return TextButton(

    onPressed: () => setCount(count + 1),

    child: Text("I've been clicked $count times"),

  );

}

// Scoped state (generates a Flutter InheritedWidget that

// can be accessed by tree descendants)

@inheritedRearchWidget

(int, void Function()) scopedCount(WidgetHandle use) {

  final (count, setCount) = use.state(0);

  return (count, () => setCount(count + 1));

}
Listing 8:  A snippet demonstrating how global, ephemeral, and scoped state are handled in the

Dart/Flutter ReArch implementation2.

2The syntax shown in Listing 8 is not available at the time of writing, but should be available shortly after,
dependent on when Static Metaprogramming is released.

Interestingly, with the three types of state demonstrated above, a full UI application can be made

without the direct use of any object-oriented programming in application code.

4.1.2 Lexical Scoping
As capsules are just functions in their native programming language, they are accessible to only

their lexical scope; i.e., a public capsule can be exposed in a library that has multiple private cap-

sule dependencies. Because capsules are composed by referencing their dependencies, containers

are able to build all private capsule dependencies without hassle, even though those capsules

may not actually be in scope.
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This exact insight is what allows ReArch to work across packages/libraries, solving the distrib-

ution problem in component-based software engineering, simply by using features that already

exist in modern programming languages.

For a concrete example, take Listing 9, where capsules can be made module-private. The Rust

example web application follows a similar pattern to hide private capsules.

mod capsules {

    /// A private capsule dependency.

    fn private_dependency_1_capsule(_: CapsuleHandle) -> u8 {

        0

    }

    /// Another private capsule dependency.

    fn private_dependency_2_capsule(_: CapsuleHandle) -> u8 {

        1

    }

    /// The public capsule to be exposed outside of the module

    /// that depends upon the two private capsules.

    pub(super) fn public_capsule(

        CapsuleHandle { mut get, .. }: CapsuleHandle

    ) -> u8 {

        get(private_dependency_1_capsule) + get(private_dependency_2_capsule)

    }

}

// Bring all public capsules (only "public_capsule" here) into scope

use capsules::*;

fn main() {

  let container = Container::new();

  assert_eq!(container.read(public_capsule), 1);

}
Listing 9:  A Rust example of how some capsules can remain private, yet still be built by a con-

tainer when a public capsule is requested. Here, public_capsule is the only public capsule; the

other two are private and are kept out of the global lexical scope.
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4.1.3 Factories
Factories (also known as factory capsules) are capsules that return a function that creates some

object/resource. Factories are not unique to ReArch at all, as factories are a design pattern bor-

rowed directly from object-oriented programming.

Factories are what enables capsules to interact with non-encapsulable data, such as a text box’s

input. It does not make sense to encapsulate all data an application may encounter, especially if

that data is shortlived. For these situations, factories are a perfect fit, an example of which can

be seen in Listing 10.

String salutationCapsule(CapsuleHandle use) => 'Hello';

String Function(String) greetingFactory(CapsuleHandle use) {

  final salutation = use(salutationCapsule);

  return (name) => '$salutation, $name!';

}

final container = CapsuleContainer();

assert(container.read(greetingFactory)('Lilly') == 'Hello, Lilly!');
Listing  10:  An example of the factory pattern in the ReArch Dart implementation. A

salutationCapsule is used to supply the salutation used in a greeting-creation factory that is

eventually invoked with an individual’s name.

4.1.4 Actions
Similar to factories, actions (also known as action capsules) also return a function. However,

unlike factories, actions often perform some operation that has some sort of side effect; many

actions trigger container rebuilds through state updates or simply interface with some external

entity (such as I/O).

The most simple action can be implemented simply to simply adapt a particular API to a cap-

sule’s consumer. Take Listing 11, where the private _countManager is exposed indirectly through

countCapsule, incrementCountAction, and resetCountAction.
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(int, void Function(int)) _countManager(CapsuleHandle use) => use.state(0);

int countCapsule(CapsuleHandle use) => use(_countManager).$1;

void Function() incrementCountAction(CapsuleHandle use) {

  final (count, setCount) = use(_countManager);

  return () => setCount(count + 1);

}

void Function() resetCountAction(CapsuleHandle use) {

  final (_, setCount) = use(_countManager);

  return () => setCount(0);

}
Listing 11:  An example of the action pattern in the ReArch Dart implementation, with two ac-

tions (incrementCountAction and resetCountAction). Note that in practice, while actions can

and are used like the above, often a tuple/struct (Rust) or record (Dart) can be returned from

a capsule with all of the associated actions of a capsule to save on boilerplate. (Above, this

would be a record like ({int count, void Function() incrementCount, void Function()

resetCount}).)

While Listing 11 is a valid use of actions, actions tend to be more useful when modeling individ-

ual features of an application. For example, an invoicing/billing application for a financial firm

may have the following requirements:

• Load client information, including their assets

• Generate bill pdfs to send to clients

• Download/print those bills

• Print envelopes to send the bills in

• Export/display general information/statistics

All of these features are easily modeled with actions! All a developer has to do is think to make

one action capsule per mental task, and an application quickly starts to fall into place.

4.1.5 Generics
As it has been mentioned numerous times, capsules are just functions that consume a

CapsuleHandle. Due to the fact that they are just functions, capsules also follow the same rules

as functions. In languages that support it, capsules can be generic over a set of different types.
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Generic capsules are often useful when employed in conjunction with the action and factory

paradigms discussed previously. A toy example of a generic capsule can be found in Listing 12.

fn repeated_item_factory<T: Clone>(

    _: CapsuleHandle,

) -> impl CData + Fn(T, usize) -> Vec<T> {

    |item_to_repeat, repetitions| (0..repetitions).map(|_|

item_to_repeat.clone()).collect()

}

// ...

let repeated_ints_factory = container.read(repeated_item_factory::<i32>);

let repeated_strs_factory = container.read(repeated_item_factory::<&str>);

let repeated_strs = repeated_strs_factory("this will be repeated 1234 times!",

1234);
Listing 12:  A toy example of a generic capsule in the ReArch Rust implementation that returns

a list of some given item, repeated a given number of times.

While Listing 12 doesn’t make sense to use outside of an example demonstrating generic cap-

sules, the paradigm itself is very useful, especially in more advance situations. Generic capsules

are used to enable Listing 17 later on, allowing database transactions to be used under a variety

of circumstances.

In languages like Rust, monomorphization is used to turn each generic capsule into possibly

many unique capsules. While the capsules displayed in Figure 13 later on do all technically exist

only once in a mental model, a container running the application will actually hold nine “cap-

sules”:

1. Raw Database

2. With Read TXN (monomorphized for List TODOs)

3. With Read TXN (monomorphized for Get TODO)

4. With Write TXN (monomorphized for Create TODO)

5. With Write TXN (monomorphized for Delete TODO)

6. List TODOs

7. Get TODO

8. Create TODO

9. Delete TODO
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While the example application only defines the With Read/Write TXN capsules once, they are

automatically monomorphized when they are depended upon.3

3An astute reader may notice that the With TXN capsules have two generics, F and R. F is only ever known by
the compiler, and R is just the return value of F and is known/can be explicitly written in the example application.

4.1.6 Closures
Also referred to as inline capsules (as they are often defined in-line with other application code),

capsules that are expressed as closures are a very useful mechanism to reduce rebuilds and/or to

capture some variable(s) from the surrounding environment.

As this is a more common pattern in the Dart/Flutter ReArch implementation, the extension

method shown in Listing 13 was introduced on capsules to reduce some boilerplate and possible

leaks when creating inline capsules. Inline capsules are much more common when handling UI

code that displays some keyed data structure.
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/// Provides the [map] convenience method on [Capsule]s.

extension CapsuleMapper<T> on Capsule<T> {

  /// Maps this [Capsule] (of type [T]) into

  /// a new idempotent [Capsule] (of type [R])

  /// by applying the given [mapper].

  ///

  /// This is similar to `.select()` in some other libraries.

  Capsule<R> map<R>(R Function(T) mapper) {

    return (CapsuleReader use) => mapper(use(this));

  }

}

// Say we have a capsule representing some list.

List<String> myListCapsule(CapsuleHandle use) => [];

// We can use the extension method above to help reduce UI rebuilds.

@rearchWidget

  Widget myListItem({

  int listIndex,

  WidgetHandle use,

}) {

  // With this inline capsule, we only rebuild when the data at

  // myList[listIndex] changes, instead of the whole myList.

  final dataAtIndex = use(

    // This creates a new inline capsule that gets a particular index of myList:

    myListCapsule.map((myList) => myList[listIndex]),

    // Alternatively, we can write the closure explicitly

    // (but this is often discouraged):

    // (CapsuleReader use) => use(myListCapsule)[listIndex],

  );

  return Text('myList[$listIndex] = $dataAtIndex');

}
Listing 13:  An example of inline capsules in the Dart/Flutter ReArch implementation. Here, the

inline capsules are used to reduce the number of (expensive) widget rebuilds.

Notice how in Listing 13 the explicitly written inline capsule is defined as (CapsuleReader use)

=> ... instead of the more brief (use) => ... or even (CapsuleHandle use) => .... This is since

(use) => ... would be inferred as (CapsuleHandle use) => ..., which itself is discouraged due
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to the possibility of leaks. CapsuleHandles give you a CapsuleReader and SideEffectRegistrar,

and if one is not careful, registering side effects in an inline capsule can easily lead to growing

memory leaks. Instead, by manually writing (CapsuleReader use) => ..., we use function

polymorphism to ensure leak safety by preventing the use of side effects (CapsuleReader is a

supertype of CapsuleHandle in Dart).

4.1.7 Asynchrony
Often, interfacing with external systems in an application is an asynchronous operation. As an

example, I/O code, such as network requests and file operations, is often expressed as asynchro-

nous code to prevent blocking. To handle such scenarios, ReArch comes builtin with several side

effects to handle common operations for asynchronous code in both the Dart and Rust imple-

mentations.

The most fundamental asynchronous side effect is for handling Futures; for the unfamiliar, a

Future is an object representing the current state of a state machine modeled for some asyn-

chronous code, where the final state is the completion of the asynchronous operation.

When used in conjunction with capsule composition, the state of asynchronous code can be eas-

ily cached within a container to be directly accessed later, as shown in Listing 14
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// Some dependency capsule of the asynchronous capsule.

int countCapsule(CapsuleHandle _) => 0;

// Our async capsule that directly returns a Future.

Future<int> delayedAsyncCapsule(CapsuleHandle use) async {

  final count = use(countCapsule);

  final delayedCount = await Future.delayed(

    const Duration(seconds: 1),

    () => count,

  );

  return delayedCount + 1;

}

// We will wrap around "delayedAsyncCapsule" with this capsule that

// returns an AsyncValue, which is more useful in application code

// for handling various asynchronous states.

AsyncValue<int> delayedCapsule(CapsuleHandle use) {

  final delayed = use(delayedAsyncCapsule);

  return use.future(delayed);

}
Listing 14:  An example of an asynchronous capsule returning a Future, and another capsule

wrapping around the first capsule to make writing reactive, synchronous code possible based on

the current asynchronous state.

Since the second capsule in Listing 14 registers a side effect (i.e., is not idempotent), it is eagerly

updated whenever an upstream capsule is updated, ensuring the state of the lastest asynchro-

nous computation is either computing or completed. Alternatively, without the delayedCapsule,

delayedAsyncCapsule would be evaluated lazily and garbage collected, with the downside that

it will not receive updates and may require time for the asynchronous computation to complete

when when requested fresh from the container.

4.1.8 Warm Ups
To prevent the downtime associate with some asynchronous capsules/ to ensure an asynchro-

nous capsule’s completed state is always available synchronously, one can warm up the asyn-

chronous capsule at application start up to cache a copy of the completed data for the remain-
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der of the application. This process heavily relies upon capsule composition, as demonstrated in

Listing 15.

/// The raw [SharedPreferences] async capsule to be warmed up.

Future<SharedPreferences> sharedPrefsAsyncCapsule(CapsuleHandle _) {

  return SharedPreferences.getInstance();

}

/// The warm up capsule for [sharedPrefsAsyncCapsule].

AsyncValue<SharedPreferences> sharedPrefsWarmUpCapsule(CapsuleHandle use) {

  final sharedPrefsFuture = use(sharedPrefsAsyncCapsule);

  return use.future(sharedPrefsFuture);

}

/// A synchronous copy of [sharedPrefsAsyncCapsule].

SharedPreferences sharedPrefsCapsule(CapsuleHandle use) {

  return use(sharedPrefsWarmUpCapsule).dataOrElse(

    () => throw StateError('sharedPrefsWarmUpCapsule was not warmed up!'),

  );

}
Listing 15:  A Dart example of how to “warm up” an asynchronous capsule by wrapping around it

with capsule composition. SharedPreferences is a common local-storage library used in Flutter

applications that is only accessible asynchronously.

Similar to regular asynchronous capsules, Listing  15 starts with two capsules: one return-

ing a Future and one returning an AsyncValue. Then, a new capsule is formed via com-

position that unwraps the value contained within the AsyncValue, throwing an error if it

is not present. Thus, in order to properly read the third capsule, one must first listen to

(i.e., warm up) the sharedPrefsWarmUpCapsule, and only read sharedPrefsCapsule once the

sharedPrefsWarmUpCapsule emits some data (i.e., is warmed up). If the sharedPrefsCapsule is

read without its dependency first being warmed up, sharedPrefsCapsule would raise an error

during its build.

4.2 Example Applications
To showcase the process of building applications with ReArch, several open-source example ap-

plications were created. In Dart/Flutter, a to-do list application was built with a mobile-friendly

UI in mind. In Rust, a to-dos web server was created as an analogous counterpart to the mobile
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application and provides a REST API as its interface. Finally, the presentation for ReArch itself

was built as a desktop/web application using the Dart/Flutter implementation.

4.2.1 Front End: Flutter TODOs Application
To demonstrate GUI building with the Dart/Flutter ReArch implementation, a TODOs list mobile

application was made. The TODOs mobile application features a way to create, delete, search,

and toggle the completion-state of a list of todos, as can be seen in Figure 10. The full source code

can be found under the examples folder at https://github.com/GregoryConrad/rearch-dart.

Figure 10:  A screenshot of the TODOs mobile application.

To build the TODOs mobile application, a set of 7 capsules were needed as shown in Figure 11.

The first three handle accessing the underlying database asynchronously (using warm up cap-

sules as discussed previously), followed by a fourth composed capsule that provides an API to
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get TODOs from the database. Then, several other capsules were made for the various UI com-

ponents to operate as needed.

Figure 11:  The underlying capsule dependency graph of the Flutter TODOs application. Capsules

highlighted in yellow are non-idempotent, whereas capsules highlighted in green are idempo-

tent.

4.2.2 Front End: ReArch Presentation
You may interact with the ReArch presentation at https://rearch-presentation.web.app and view

the corresponding source code at https://github.com/GregoryConrad/rearch-dart/tree/main/

examples/presentation. The left/right arrow keys move between slides and the up arrow key

opens a navigation/control panel.

4.2.3 Back End: Rust TODOs Web Server
To showcase the utility of the Rust ReArch implementation, a TODOs list web server was made

with Axum web framework. Axum is currently a popular choice in the async Rust ecosystem,

and is a part of the tokio project [17]. The ReArch example web server serves a REST API with

four available operations, as specified in Table 1. The full source code can be found under the

examples folder at https://github.com/GregoryConrad/rearch-rs.
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HTTP Verb Endpoint Description
GET /todos Returns list of todos
POST /todos Creates a new todo
GET /todos/:id Returns the todo with the given id

DELETE /todos/:id Deletes the todo with the given id

Table 1:  The endpoints available on the ReArch example TODOs web server.

As such, the application can be tested by sending HTTP requests to the exposed endpoints and

monitoring the state of the application.

4.2.3.A Initial Implementation
Initially, the web server was created using a total of 5 capsules. These capsules can be seen in

Figure 12.

Figure 12:  The initial five capsules of the ReArch example web server. Red capsules are module-

private, green capsules are module-public (in terms of lexical scope).

There was one capsule wrapping around the database layer, in this case, redb, due to it’s sim-

plicity and embeddable nature [18]. This database capsule has a module-private lexical scoping,

meaning that Rust code outside of the module is unable to access it. Instead, four capsules, one

for each application feature, are exposed publicly in the module to be used by the web server

front end. Each capsule returns a function that performs its designated feature; i.e., the “List TO-

DOs” capsule returns a function that returns a list of TODOs, and the “Delete TODO” capsule

returns a function that consumes an ID and deletes the corresponding TODO.

While this highly functional approach works adequately for the target needs of the TODOs

server, there was a substantial amount of database boilerplate found in each feature capsule. Each

feature-level capsule needed to create, mutate, and commit transactions. While this amount of
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boilerplate is manageable for just four capsules, it can quickly add up and become unmaintain-

able as an application adds more features requiring database interoperability. For an example,

see the initial “Delete TODO” capsule in Listing 16.

pub(super) fn delete_todo_capsule(

    CapsuleHandle { mut get, .. }: CapsuleHandle,

) -> impl CData + Fn(Uuid) -> Result<Option<String>, redb::Error> {

    let db = get.get(db_capsule);

    move |uuid| {

        let txn = db.begin_write()?;

        let mut table = txn.open_table(TODOS_TABLE)?;

        let removed_todo = table.remove(uuid.as_u128())?.map(|s|

s.value().to_owned());

        drop(table);

        txn.commit()?;

        Ok(removed_todo)

    }

}
Listing 16:  The Rust definition of the initial “Delete TODO” capsule, demonstrating some extra

database-induced boilerplate.

4.2.3.B Final Implementation
To solve the boilerplate/maintainability problems risen in the preceeding section, two interme-

diary capsules were added, highlighted yellow in Figure 13. These two capsules abstract away

read/write transaction creation and handling logic, leaving each feature level capsule to just re-

quest/modify the data they need.
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Figure 13:  The final seven capsules of the ReArch example web server. Red capsules are module-

private, green capsules are module-public, and yellow capsules are the additional capsules and

are module-private (in terms of lexical scope).

Each capsule returns a higher order function that consumes a function to call with a given read/

write transaction. The exact definitions, at the time of writing, are available in Listing 17. Each

capsule consumes a CapsuleHandle and returns their associated higher order function (impl

Fn(F) -> Result<R, redb::Error> + Send + Sync + Clone, where F is the function argument

that will be invoked with a read/write transaction).
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fn with_read_txn_capsule<F, R>(

    CapsuleHandle { mut get, .. }: CapsuleHandle,

) -> impl CData + Fn(F) -> Result<R, redb::Error>

where

    F: FnOnce(ReadOnlyTable<'_, u128, &str>) -> Result<R, redb::Error>,

{

    let db = get.get(db_capsule);

    move |with_table| {

        let txn = db.begin_read()?;

        let table = txn.open_table(TODOS_TABLE)?;

        with_table(table)

    }

}

fn with_write_txn_capsule<F, R>(

    CapsuleHandle { mut get, .. }: CapsuleHandle,

) -> impl CData + Fn(F) -> Result<R, redb::Error>

where

    F: FnOnce(Table<'_, '_, u128, &str>) -> Result<R, redb::Error>,

{

    let db = get.get(db_capsule);

    move |with_table| {

        let txn = db.begin_write()?;

        let table = txn.open_table(TODOS_TABLE)?;

        let result = with_table(table);

        txn.commit()?;

        result

    }

}
Listing 17:  The Rust definitions of the “With Read TXN” and “With Write TXN” capsules, min-

imizing code coupling and boilerplate in the feature-level capsules.

Then, the capsules showcased in Listing 17 were used to refactor the four feature-level capsules,

like the “Delete TODO” capsule, which was updated to match Listing 18.
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pub(super) fn delete_todo_capsule(

    CapsuleHandle { mut get, .. }: CapsuleHandle,

) -> impl CData + Fn(Uuid) -> Result<Option<String>, redb::Error> {

    let with_txn = get.get(with_write_txn_capsule);

    move |uuid| {

        with_txn(move |mut table| {

            let removed_todo = table.remove(uuid.as_u128())?.map(|s|

s.value().to_owned());

            Ok(removed_todo)

        })

    }

}
Listing 18:  The Rust definition of the final “Delete TODO” capsule, without any extra database/

transaction induced boilerplate.

Such a change helps demonstrate why ReArch is applicable to many domains; it is easy to en-

able rapid feature adoption while keeping loose coupling simply by introducing new capsules.

Further, ReArch is highly functional, and supports many functional patterns. With ReArch as

an application’s base, entirely purely functional applications that focus solely on data and data

transformations are possible unlike before.

4.3 Rust Challenges
While the Dart ReArch implementation was relatively straightforward, the Rust implementation

came with some challenges.

4.3.1 Modeling Side Effects
At a theoretical level, a side effect is merely a function that consumes a tuple of a mutable ref-

erence to it’s current state and a function to rebuild a capsule while mutating its mutable state,

returning an API to interact with the mutable state and/or a method to rebuild and mutate the

given state. I.e., the side effect function only transforms its raw input into a form that is more

suitable to capsules.

Naturally, a side effect should then be generic over any lifetimes for its tuple input. To properly

express this in Rust using traits, one must use Generic Associated Types (GATs)4. This can look

something like Listing 19.

4https://github.com/GregoryConrad/rearch-rs/issues/3
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pub trait SideEffect {

    // Here we define the API of the side effect,

    // which should work for any lifetime 'a;

    // i.e., the side effect should not be tied to any particular tuple input.

    type Api<'a>;

    // Then, we should be able to transform the side effect tuple input

    // (wrapped in the SideEffectRegistrar below)

    // into the API above.

    fn build<'a>(self, registrar: SideEffectRegistrar<'a>) -> Self::Api<'a>;

}
Listing 19:  Modeling side effects in Rust with a single-method trait that builds/transforms the

side effect input into the side effect’s API. The above example relies on GATs in order to allow

the side effect to work with varied lifetimes of the SideEffectRegistrar.

While Listing 19 alone compiles fine, the second it is used in other code, the Rust compiler has a

hard time due to limitations in the current higher-ranked lifetimes implementation. For the first

example, take the raw side effect in <Listing 20>.

pub fn raw<T: Send + 'static>(

    initial: T,

) -> impl for<'a> SideEffect<

    Api<'a> = (

        &'a mut T,

        impl Fn(Box<dyn FnOnce(&mut T)>) + Clone + Send + Sync,

    ),

> {

    move |register: SideEffectRegistrar| register.raw(initial)

}
Listing 20:  The proper implementation of the raw side effect, which simply returns the tuple of

state and a way to rebuild/mutate that state as discussed previously.

While this definition looks correct, it fails to compile due to an issue with closures and lifetimes5.

No worries, there’s a workaround using nightly! One can write something along the lines of

5https://github.com/rust-lang/rust/issues/111662

for<'a> |b: &'a u8| -> &'a u8 { b }. Here’s the second issue: closures aren’t allowed to

explicity state their return type impl Traits, which takes this workaround out of the picture,

since the second element of the tuple is an impl Fn(Box<_>).
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Thus, I remembered a nuanced technique I had learned previously that “helps the compiler out”

with lifetimes by explicitly providing them:

// This will help the compiler out by providing the proper lifetime annotations.

fn fix_lifetime<F, T, R>(f: F) -> F

where

    F: for<'a> FnOnce(SideEffectRegistrar<'a>) -> (&'a mut T, R),

{

    f

}

pub fn raw<T: Send + 'static>(

    initial: T,

) -> impl for<'a> SideEffect<

    Api<'a> = (

        &'a mut T,

        impl Fn(Box<dyn FnOnce(&mut T)>) + Clone + Send + Sync,

    ),

> {

    fix_lifetime(move |register: SideEffectRegistrar| register.raw(initial))

}
Listing 21:  A modification of the above raw side effect with the second workaround employed.

Now, this exact solution works for simple scenarios just fine, but for ReArch, instead fails to

compile with a cryptic error: higher-ranked lifetime error6.

6https://github.com/rust-lang/rust/issues/116869

Fast forward a couple weeks, and I have another idea: ditch the functions for now, and manually

attempt to impl SideEffect. This would look something like Listing 22.

pub struct Raw<T>(T);

impl<T: Send + 'static> SideEffect for Raw<T> {

    type Api<'a> = (&'a mut T, impl CData + Fn(Box<dyn FnOnce(&mut T)>));

    fn build(self, registrar: SideEffectRegistrar<'_>) -> Self::Api<'_> {

        registrar.raw(self.0)

    }

}
Listing 22:  A modification of the above raw side effect with the third (and final) workaround

employed.
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However, this workaround also doesn’t compile, due to a [E0700]: hidden type for `impl

(Fn(...)) + CData` captures lifetime that does not appear in bounds. But this doesn’t

make any sense; the impl Fn there should be 'static (owned) as it doesn’t depend on the life-

time 'a from the higher ranked lifetime (internally, a .clone() is used to keep it 'static).

All this to say: the current Rust ReArch implementation uses an incorrect model for side effects

(shown in Listing 23) that ties a side effect to a particular SideEffectRegistrar to prevent the

errors in higher ranked lifetimes by avoiding them entirely.

pub trait SideEffect<'a> {

  type Api;

  fn build(self, registrar: SideEffectRegistrar<'a>) -> Self::Api;

}
Listing 23:  The current model for side effects in the Rust ReArch implementation, which is tech-

nically incorrect because the trait has a lifetime 'a attached to it. It works, but requires an infe-

rior/incorrect library API.

4.3.2 Differing Container Implementations
While the container provided in the Rust ReArch implementation effectively covers most needs,

there are times (e.g., embedded systems/no_std) where a different container implementation is

more appropriate. This exact scenario can be helpful in benchmarking, as seen in [19]. Unfor-

tunately, exposing only an interface for a container, as may be done in other programming lan-

guages, would not help since differing container implementations may require different levels

of thread synchronization support from capsules, which would then change the API signature.

In particular, the provided container implemenation requires capsule data to be Send + Sync +

Clone + 'static, whereas a single-threaded container may only require Clone + 'static. Due

to this, and also reliances on container innerworkings to support side effects, the CapsuleHandle

is not possible to port directly to other container implementations. I.e., another library could not

use ReArch’s CapsuleHandle and just provide their own container.

Instead, ReArch exposes several traits, such as CData, so that a user does not have to rely on

manually writing Send + Sync + Clone + 'static and similar trait bounds in all application

code. In addition to brevity, this change also enables new container implementations to simply

expose the same API as ReArch, but as a polyfill so swapping the underlying implementation

is still possible without affecting any application code. This poses a suitable compromise for an

otherwise difficult or impossible problem.
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4.3.3 Trait Upcasting
As of December 2023, the Rust ReArch implementation must be compiled with nightly due to

trait upcasting7 still requiring nightly.

7https://github.com/rust-lang/rust/issues/65991

Internally in the Rust implementation, a container serves as a hash map of a capsule’s TypeId

to its data. Because capsule data is stored as dyn CapsuleData (a trait used to represent Any +

Send + Sync + DynClone + 'static) in the hash map to support concurrency requirements, a

capsule’s current data must first be upcasted to Any to then be downcasted to the concrete type,

which is where trait upcasting comes in. Alternatively, the container implementation is possible

with stable Rust and the use of unsafe Rust (pointer casting in particular), but was avoided since

pointer casting, even when used carefully, can be highly dangerous.

4.3.4 Syntax Limitations
The CapsuleHandle is a composition of CapsuleReader and the SideEffectRegistrar, both of

which simply serve as a wrapper around singular functions. Ideally, one should just be able to

treat these two structs as functions, but this requires unboxed_closures and fn_traits, which

will both in turn require nightly for the foreseeable future8. In the meantime, one must instead

8The two nightly features are tracked by https://github.com/rust-lang/rust/issues/29625, which is held up by
the desire for variadic generics first. There is a running joke that variadic generics will be ready for use in 2030
or 2040, but I personally am excited to use variadic generics in 2050.

call get.get(some_capsule) and register.register(some_side_effect()), versus the sim-

pler/intended get(some_capsule) and register(some_side_effect()).

4.4 Evaluations
In addition to the working example applications discussed above, the Rust ReArch implementa-

tion was also benchmarked to give a performance baseline. On my M1 Macbook Pro, the Rust

ReArch implementation is able to handle >30 million container reads per second and >1.5 million

container updates per second. The bottleneck, based on several flamegraphs, appears to be the

underlying memory operations and allocations associated with container read and write trans-

actions. These numbers largely correspond with best-case scenarios; under high contention, such

as 8 readers a second, reads can drop to just over 2 million reads a second. Further, the 30 million

reads a second is from reading a 4 byte capsule from the container; the same benchmark per-

formed with a simple 24 byte capsule results in a significantly reduced performance of just over

20 million reads a second. Such a difference in performance helps to illustrate how important the

effeciency of the underlying memory operations matter in regard to the benchmark.
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5 Future Works
Throughout the creation of ReArch, I had several ideas that serve as interesting follow-up ideas.

5.1 Programming Language with First-Class Capsules
Instead of defining capsules as functions, a dedicated programming language with first class

capsule support would be a significant step forward for ReArch. In addition to having proper side

effect support (with easier composability), such a programming language could also make nu-

merous container-based optimizations. First, bucket-based container locking would be possible,

possibly permitting some parallelism across multiple rebuilds. Further, the language could pro-

vide a generic container interface, allowing developers to easily implement their own containers

for differing needs. In such a language, the container could perhaps also serve as an alternative

to the heap with automatic garbage collection, which effectively solves many memory safety

problems in other programming languages today.

5.2 Transactional Side Effect Mutations
ReArch currently only supports updating a singular capsule’s side effect via the triggering of a

rebuild. While this works for almost all real-world scenarios, it can lead to some workarounds

(such as having one “central” capsule with a collection of data that other capsules then have

to feed off of). With transactional side effect mutations, a developer could compose mutations

across a set of capsules.

Imagine a scenario where we have two people (A and B) who each have a bank account. Say A

wants to transfer some money to B. It may make sense here to model both A and B as dynamic

capsules with their own funds; however, this is not possible to do transactionally with the cur-

rent implementation since we cannot deduct a certain amount from A and add it to B in a single

transaction. Thus, the current solution is to make one “central” capsule that houses every bank

account value.

For the Dart/Flutter implementation, this should be possible to add via a new set of transactional

side effects without breaking changes. However, this may require some breaking/nontrivial

changes in the Rust implementation that will need to be worked out before library stabilization.

5.3 Dedicated UI Framework
A UI framework built upon ReArch’s idioms would be a big leap toward enabling ReArch’s adop-

tion. Such a framework would inherently embrace functional programming without object-ori-

entation while forcing the use of databinding. I have already drafted a prototype API for such a

framework, which is visible in Listing 24.
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fn sample_view(_: ViewHandle, _: ()) -> TerminatedView {

    view()

        // With the builtin proc macro:

        .padding(16.0) // sugar for .child(padding, 16.0) without proc macro

        // Views to align things:

        .center() // sugar for .child(center, ())

        // Support for scoping state:

        .inject(scoped_state, 1234) // injects whatever scoped_state returns into

all descendants

        // A similar macro will exist for scoping state: .scoped_state(1234)

        // And of course you can have views with multiple children:

        .row(Default::default())

        .children(vec![

            view().child(text, "Hello World!".to_owned()),

            view()

                .inject(text_style, TextStyle)

                .child(text, "Hello World Again!".to_owned()),

            view()

                .child(padding, 16.0)

                .child(column, Default::default())

                .children(vec![

                    view().child(text, "A list item:".to_owned()),

                    view()

                        .inject(scoped_index_key::<usize>, 0)

                        .child(list_item, ()),

                ]),

        ])

}
Listing 24:  A sample view made with prototype code for a possible ReArch UI Framework. The

ViewHandle is akin to the CapsuleHandle, but also contains a view-focused Context that allows

developers to access injected/scoped state and layout constraints.

5.4 Testing Framework
As-is, ReArch remains highly testable by removing all code coupling and separating side effects.

However, testing code that registers side effect(s) requires some knowledge of the inner-work-
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ings of the side effect(s) in question, making testing side effects substantially more difficult. A

simple testing framework that provides side effect mocks would be a nice improvement and is

planned to be added to the core framework.

5.5 Eager Garbage Collection
Currently, neither library supports (a full) eager garbage collection. This decision was made on

purpose, and is to enable the caching of a capsule’s data to speed up future reads and more

effectively serve as an incremental computation framework. However, perhaps on memory con-

strained devices, it may make sense to support eager garbage collection and/or to only store

capsules with non-idempotent transitive dependents in the container.

6 Conclusion
ReArch is a data-driven and highly functional approach to application architecture. There are

three main components: capsules, containers, and side effects. Capsules are pure functions that

may register side effects in order to interface with the outside world (despite remaining function-

ally pure), and containers orchestrate the life cycle of capsules and any registered side effect(s),

rebuilding capsules as necessary. Further, to support ReArch’s functional nature, many capsules

are higher order functions, treating functions and closures as data to give to other capsules,

consequently enabling easy composition. As ReArch only consists of three core components, a

multitude of paradigms may be employed to build more complete and complex applications that

have a variety of requirements, including I/O and persistence.

To accompany the underlying theory presented in this paper, there are two supplemental ReArch

library implementations, one for Rust9, and one for Dart (with an auxiliary Flutter package)10. To

9https://github.com/gregoryconrad/rearch-rs
10https://github.com/gregoryconrad/rearch-dart

demonstrate the utility of these libraries, there also exists several example applications, includ-

ing a to-do list mobile application, a to-do list web server, and the ReArch presentation itself11.

More information can also be found at ReArch’s documentation12.

11https://rearch-presentation.web.app
12https://rearch.gsconrad.com
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